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A method proposed by Hall allowing direct calculatiofi of bond orders of even r without 
computing first the MO's is extended a) so as to take into account some states which include singly 
occupied MO's and b) to odd AH. 

An elegant method to compute bond orders p,~ in even alternant hydrocarbons 
(AH) has been proposed by Hall [1]. He formulates equations which allow 
direct estimation of P without first calculating the molecular orbitals (MO's). 

He applied this method to states in which the MO's are doubly occupied, 
such that each one has its associated MO (found by changing the signs of alternate 
atomic orbitals) unoccupied [1, 2]. They correspond to bond order matrices 
with non-zero determinant. 

Hall's method is here extended a) so as to include certain states containing 
singly occupied MO's and b) to odd AH. It is also shown how to assign the 
solutions obtained to a corresponding system of occupation numbers. 

The occupied MO's are expressed as linear combinations of N standard 
equivalent orbitals [1] 

= ~1 U + ~b 2 V (1) 

~b 1 and ~b 2 are the standard equivalent orbitals of starred and unstarred atoms. 
When N is even U and V are square matrices (�89 x �89 For N odd, U has 
�89 + 1) rows and � 8 9  1) columns, V is a square matrix of dimension 
�89  1) x �89 - 1). The eigenvalue equation equation is" 

B V =  U E ;  B ' U =  VE (2) 

where E is a diagonal matrix containing the eigenvalues corresponding to the 
occupied energy levels, and B is the part of the Hamiltonian connecting neigh- 
bouring atoms belonging to different sets (The prime denotes the transposed 
matrix). 

If (U, V) correspond to E, (U, - V) correspond to - E  and we shall denote 
by X ~ the eigenvector of the zero eigenvalue, which contains the standard equiva- 
lent orbitals belonging to odd atoms and satisfies 

B ' X  ~ = 0. (3) 

One obtains the formulae corresponding to N even by putting X ~ identically 
zero. 

* Consejo Nacional de Investigaciones Cientificas y T~cnicas. 
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If c~, is the coefficient of the i-th eigenvector belonging to atom #, we may 
write the orthonormalization as: 

CiuCjg -= 2~ij (4) 
ta 

which yield 

U ' U  + V ' V =  2I~ 
U , U _  V , V = O  j U ' U  = I  = V ' V ,  

(5) 
X ~  X ~  2 U'  X ~ = U X ~  

and 

y ,  ci,  % = 2~5~ (6) 
i 

from which 

V V ' = I ,  

u u '  + � 8 9 1 7 6  ~ = I .  (7) 

We represent P by the N x N matrix 

U ( n l + n h ) U ' + X O n o  X ~  I b U ( n z - n h ) V '  ) 

P =  V ( n t -  nh)U' t (8) I V ( n  l ~- n h) V '  I 

n~ is a diagonal matrix with half the occupation numbers of the lowest energy 
levels and n h a diagonal matrix with half the occupation numbers of the associated 
highest energy levels, n o is half the occupation number of the zero energy level. 
We shall consider states with n z + n h = [, n o = �89 for which P reduces to: 

where 

P = U n  V ' .  (10) 

For  N even P is a square matrix �89 x �89 For N odd, it has �89 + 1) rows 
and �89 - 1) columns. 

As any element of n = n~ - n h must be + 1 or 0 when n~ + n h = I we have n a = n, 
therefore 

P P ' P  = U n  V'  Vn  U' U n  V'  = U n  3 V'  = U n  V'  = P = P P ' P  . (11) 

For those cases with N even in which P has an inverse (detP # 0) we deduce from 
(11) 

P P ' =  I (12) 

which is the relation considered by Hall [1]. 
Instead of using (12), as Hall did, we shall use (11) which is more general 

and is valid also even though det P = 0. 
Multiplying the first of Eq. (2) from the right by n U', we get 

B P '  = U E n U ' ;  i .e .  B P '  = symmetric (13) 
27* 
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and 
Tr BP'= Tr UEnU'= Tr En (14) 

which is half the total rc energy. 
Eqs. (11) and (13) determine P and Eq. (14) is then used to assign P to the 

different possible states. 
Introducing a suitable electron interaction one can follow Hall, replacing 

B by a Hamiltonian F [1]. For example, for butadiene and pentadienyl we have 
respectively 

F = ( ~  +ap12 dp14 I { c+ap12 dp~4 \ 
-kbp23 c4-ap12/V=ll-b-bp23 l+bp23] (15) 

\dP14 c + apl2, 
where 

a = --(12] 12)/2fi23; b = -(23123)/,2fl23; d = -(14114)/2fl23; c =  fi12/f123 

and (#vl#v) is the Coulomb integral between atomic orbitals on atoms # and v. 
When making the above mentioned replacement ( B ~ F )  the total re-energy 

(substracting the self-interaction) is calculated by means of [3]: 

E= = 2Tr(FP') -  Tr((F - B)P')= Tr(FP') + Tr(BP') (16) 

Results and Discussions 1 

Tables 1 and 4 show the solutions corresponding to the Hamiltonian B for 
trans-butadiene and pentadienyl, together with the assignments by means of 
(14). The results are obviously the same as those obtained with Hfickel's wave 
functions. Similarly, Tables 2 and 5 report the solutions and assignments for the 
Hamiltonian F for trans-butadiene and pentadienyl. The values of a, b, c, d for 
trans-butadiene are taken from Pariser and Parr [4]. With the geometrical 
configuration we have adopted for pentadienyl, it should not be too far from 
reality to suppose, as we have done, the same values for its parameters. It may 
be pointed out that the states 1232 and 112241 are inverted with respect to Htickel's 
approximation (Table 1). This is not surprising, since the introduced electron 
correlation may alter Htickel's ordering. 

For pentadienyl, Htickel's approximation predict a constant Ip231 value for 
nearly all states; this feature, as can be expected is removed in Table 5. In this 
molecule, the ordering is not altered with respect to H/ickel's. 

Table 3 reports Hall's values for trans-butadiene, which should be the same 
as the first part of our Table 2. This is essentially the case for states 1222 and 3242. 
But states 1232 and 2242 are strikingly different. Our solutions were not obtained 
by Hall, due to the fact that his representation for P, namely P12 =P~4 = sin(p, 
P14 = - P 2 3  = cos(p, is not the most general representation for a unitary matrix 
(it does not include inversion). The solutions we have found are of the form 
Plz =P3r = 0, P23 = P l a  =-+ 1. This type of solutions are (for certain molecules) 
much more general than the present approach suggests. Instead, Hall writes two 
matrices which are not solutions of the problem. 

1 The detailed calculation is available on request. 
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Table 1. Bond orders and n total energy for different states of butadiene (Hiickel approximation) 

State P12 P2a Pl4 E~ Order 
(fl units) 

1222 0.8944 0.4473 -0 .4473 4.472 1 
1232 0 1 1 2 4 
2242 0 - 1 - 1 - 2  5 
3242 -0 .8944  - 0.4473 0.4473 -4 .472  8 

122i31 0.4472 0.7236 0.2764 3.236 2 
li2241 0.4472 -0 .2764  -0 .7236  1.236 3 
li324i -0 .4472  0.2764 0.7236 - 1.236 6 
213i42 --0.4472 -0 .7236  --0.2764 --3.236 7 

Table 2. Bond orders and n total energy for different states of trans-butadiene with Hamiltonian F 

State P12 P23 Pi~ E~ Order 
(fl2a units) 

1222 0.9771 0 . 2 1 2 7  --0.2127 11.558 1 
1232 0 1 1 5.247 3 
2242 0 -- 1 -- 1 1.247 5 
3242 --0.9239 --0.3826 0.3826 --2.964 8 

122131 0.4680 0.6758 0.3241 6.658 2 
112241 0.4963 --0.4396 --0.5604 4.416 4 
113241 --0.4457 0.2734 0.7266 --0.931 6 
213142 --0.4930 -0 .5834  -0 .4166  --2.608 7 

Table 3. Hall's bond orders for trans-butadiene 

State P12 P23 P14 

1222 0.9771 0.2127 --0.2127 
1232 0.9771 --0.2127 0.2127 
2242 --0.9239 0.3811 --0.3811 
3242 --0.9239 --0.3811 0.3811 

We remark that in Tables 2 and 5 two "complementary states" [-5] (I and II) 
do not in general obey the equation P~ + Pr~ = 21, which is not unexpected as 
this is only valid when two complementary states are calculated with the same 
Hamiltonian. Hall's electronic correlation implies a different Hamiltonian for 
each state. In this sense the lack of complementarity may give a qualitative idea 
of the modification introduced by using for each state a Hamiltonian with appropri- 
ate electronic correlation. 

One could wonder about which are the wave function coefficients (i. e. U 
and V) reproducing these bond orders. This is by no means a simple question and 
we shall not face it here. Some problems connected with it have been analyzed, 
among others, by Hall himself [-2], Parr and Mulliken [6] and recently Messmer 
[7]. 
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Table 4. Bond orders and ~ total energy for different states of  pentadienyl (Hiickel approximation) 

State P12 P23 P14 E~ Order 
(fl units) 

122231 0.7887 0.5773 -0 .2113  5.464 1 
123a4 z -0 .2113  0.5773 0.7887 1.464 4 
2z3x52 0.2113 -0 .5773  -0 .7887  - 1.464 5 
314252 -0 .7887  -0 .5773  0.2113 - 5.464 8 

lZ213141 0.2886 0.5773 0.2886 3.4636 2 
11223151 0.5 0 - 0 . 5  2 3 
11314251 - 0 . 5  0 0.5 - 2  6 
21314152 -0 .2886  -0 .5773  -0 .2886  - 3.4636 7 

Table 5. Bond orders and ~ total energy for different states of  pentadienyl with Hamiltonian F 

State PI2 P23 P14 E~ Order 
(/~23 units) 

122231 0.9009 0.4226 -0 .0991 12.301 1 
12314 z -0 .2241 0.5897 0.7759 3.847 4 
223a52 0.0571 -0 .3282  -0 .9429  1.542 5 
314252 --0.8692 -0 .4768  0.1308 - 3.625 8 

1z2a3141 0.3522 0.5019 0.3522 6.351 2 
11223151 0.5 0 --0.5 5.132 3 
11314251 - 0 . 5  0 0.5 -- 1.820 6 
21314152 -0 .4168 --0.3906 -0 .4168  - 2.659 7 
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